TN

DOMAIN Graphics Primitive Resource

Call Reference

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Order No. 007194
Revision 01

Copyright © 1986 Apollo Computer Inc.
All rights reserved.

Printed in U.S.A.

First Printing: January, 1987

®
This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogie, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue,
DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR,
and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

5

O

Preface

The DOMAIN Graphics Primitive Resource Call Reference describes the constants, data types,
and user-callable routines used by the DOMAIN®Graphics Primitive Resource (GPR) system for
developing two-dimensional graphics applications.

Audience
This manual is for programmers who use the GPR to develop application programs. Users of this
manual should have some knowledge of computer graphics and have experience in using the

DOMAIN system.

We suggest that you read the task-oriented handbook Programming with DOMAIN Graphics
Primitives before using this reference manual.

Organization of this Manual

This manual contains three chapters:

Chapter 1 Presents the constants and data types used by GPR.

Chapter 2 - Presents a description of each routine including format and parameters. The
organization of routines is alphabetical.

Chapter 3 Presents a GPR error listing.
Additional Reading

Use this reference as a companion to the Programming With DOMAIN Graphics Primitives
manual (005808).

The DOMAIN 8D Graphics Meta file Resource Call Reference manual (005812 01) describes the
constants, data types, and user-callable routines used by the DOMAIN 3D Graphics Metafile
Resource (3D GMR) system for developing three-dimensional graphics applications.

The Programming With DOMAIN 8D Graphics Metafile Resource manual (005807) describes
how to write programs that use the DOMAIN 3D Graphics Metafile Resource.

The DOMAIN 2D Graphics Metafile Resource Call Reference manual (009793) describes the
constants, data types, and user-callable routines used by the DOMAIN 2D Graphics Metafile
Resource (GMR) system for developing two-dimensional graphics applications.

The Programming With DOMAIN 2D Graphics Meta file Resource manual (005097) describes
how to write graphics programs using DOMAIN Graphics Primitives.

The Programming With General System Calls manual (005506) describes how to write programs
that use standard DOMAIN systems calls.

The DOMAIN Language Level Debugger Reference (001525) describes the high-level language
debugger.

[ad
e

Preface

The Programming With Graphics Service Routines (009797) manual describes how to write
programs that use Graphics Service Routines.

The DOMAIN Graphics Instruction Set (009791) manual describes the instruction set used by
the Graphics Service Routines.

For language-specific information, see the DOMAIN FORTRAN Language Reference (000530),
the DOMAIN Pascal User’s Guide (000792), and the DOMAIN C Language Re ference (002093).

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

lowercase Lowercase words or characters in formats and command descriptions represent
values that you must supply.

[] Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

{} Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

CTRL/Z The notation CTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the < CTRL> key while typing the
character.

Vertical ellipses represent additional information in a program fragment that is
either too lengthy to include or not relevant to the example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader’s Response form for documentation comments. By using these formal
channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command. You can also view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader’s Response form is located at the back of this
manual.

Pre face

(=13
—e
e

SN

-

/‘\“.

.,
—

, Chapter 1
Constants and Data Types

This chapter describes the constants and data types used by the Graphics Primitive Resource
package (hereafter referred to as GPR). Each data type description includes an atomic data type
translation (i.e., GPR_S$LINESTYLE_T = 2-byte integer) as well as a brief description of the type’s
purpose. The description includes any predefined values associated with the type. The following
is an example of a data type description for the GPR__$LINESTYLE T type:

GPR_$LINESTYLE_T A 2-byte integer. Specifies the linestyle for line-
drawing operations One of the following predefined
values:

GPR__$SOLID

Draw solid lines.

GPR _ $DOTTED
Draw dotted lines.

This chapter also illustrates the record data types in detail. These illustrations will help
FORTRAN programmers construct record-like structures, as well as provide useful information
for all programmers. Each record type illustration:

o Shows FORTRAN programmers the structure of the record that they must construct
using standard FORTRAN data-type statements. The illustrations show the size and
type of each field.

® Describes the fields that make up the record.

o Lists the byte offsets for each field. Use these offsets to access individual fields. Bytes
are numbered from left to right and bits are numbered from right to left.

o Indicates whether any fields of the record are, in turn, predefined records.

1-1 Constants and Data Types

GPR DATA TYPES

CONSTANTS

MNEMONIC
GPR__$BACKGROUND
GPR_ $BLACK

GPR_$BLUE

GPR_$BMF_MAJOR_ VERSION
GPR_ $BMF_ MINOR _ VERSION

GPR_$CYAN

GPR__$DEFAULT _LIST _SIZE

GPR_$GREEN

GPR_ $HIGHEST PLANE

GPR_ $MAGENTA

GPR_$MAX_BMF_ GROUP
GPR_$MAX_X_SIZE
GPR_$MAX_Y_SIZE
GPR__$NIL_ATTRIBUTE_DESC
GPR_$NIL_ BITMAP _DESC

GPR_$RED

GPR_$STRING _SIZE
GPR_$TRANSPARENT

GPR__$WHITE
GPR__$YELLOW

GPR__$ROP_ ZEROS

GPR_ $ROP_SRC_AND _DST

Constants and Data Types

Value Explanation
-2 pixel value for window background
0 color value for black |
164:0000FF

color value for blue
1 major identifier for a bitmap file
1 minor identifier for a bitmap file
16400FFFF

color value for cyan (blue + green)
10
164:00FF00

color value for green
7 max plane number in a bitmap
16#FFO0FF

color value for magenta (red + blue)
0 max group in external bitmaps
8192 max bits in bitmap x dimension
8192 max bits in bitmap y dimension
0 descriptor of nonexistent attributes
0 descriptor of a nonexistent bitmap
164FF0000

color value for red
256 number of chars in a gpr string
-1 pixel value for transparent (no change)
16#FFFFFF

color value for white
16#FFFF00

color value for yellow (red + green)
0
1

O

GPR_$ROP_SRC_AND_NOT_DST 2
GPR_$ROP_SRC 3

GPR_$ROP_NOT_SRC_AND_DST 4

GPR_$ROP_DST 5
GPR_$ROP_SRC_XOR_DST 6
GPR_$ROP_SRC_OR_DST 7

GPR_$ROP_NOT_SRC_AND_NOT_DST
GPR_$ROP_SRC_EQUIV_DS 9
GPR_$ROP_NOT _DST 10
GPR_$ROP_SRC_OR_NOT_DST 11
GPR_$ROP_NOT _SRC 12
GPR_$ROP_NOT_SRC_OR_DST 13
GPR_$ROP_NOT_SRC_OR_NOT_DS

GPR_$ROP_ ONES 15

DATA TYPES

GPR_$ACCELERATOR _TYPE_T

GPR__$ACCESS_ ALLOCATION_ T

GPR DATA TYPES

8

14

A 2-byte integer. Unique number corresponding to
the graphics accelerator processor type One of the
following predefined values:

GPR_$ACCEL_ NONE
None or not applicable.

GPR_$ACCEL_1
3DGA.

A 2-byte integer. The legal allocated sizes of pixel
cells in bitmap sections for direct access. One of
the following predefined values:

GPR_$ALLOC_1
One bit per pixel cell.

GPR_$ALLOC_2
Two bits per pixel cell.

GPR_$ALLOC_ 4 ,
Four bits per pixel cell.

1-3 Constants and Data Types

GPR DATA TYPES

GPR__$ACCESS_MODE_T

GPR_$ACCESS_SET _T

GPR_$ATTRIBUTE_DESC_T

GPR_$BITMAP_DESC_T

Constants and Data Types

GPR_$ALLOC_8
One byte per pixel cell.

GPR_$ALLOC_16
Two bytes per pixel cell.

GPR_$ALLOC_32
Four bytes per pixel cell.

A 2-byte integer. The ways to access an external
bitmap. One of the following predefined values:

GPR_$CREATE
Create a file on disk.

GPR_ $UPDATE
Update a file on disk.

GPR _$WRITE
‘Write to a file on disk.

GPR_ $READONLY
Read a file on disk.

A 2-byte integer. The set of legal allocated sizes of
pixel cells in bitmap sections for direct access.

A 4-byte integer. Identifies an attribute block.

A 4-byte integer. Identifies a bitmap.

/\
!
\

=

)

predefined
type

GPR_$BMF_ GROUP_HEADER T

byte:
offset

10:

12:

14.

GPR DATA TYPES

The group header description for an external
bitmap. The diagram below illustrates the
GPR_$BMF _ GROUP _ HEADER _ T data type:

field name
15 0

integer n_sects
integer pixel__size
integer allocated_size
integer bytes_per_line
integer

bytes_per_sect
integer
integer

storage_offset
integer

Field Description:

n__sects
The number of sections in a group.

pixel _size
The number of bits per pixel in each section of a
group.

allocated _size

bytes__per_ line
The number of bytes in one row of a bitmap.

bytes __per__sect

The number of bytes__per__line multiplied by
the height of the bitmap. This value must be
rounded up to a page boundary, or for small
bitmaps rounded up to the next largest binary
submultiple of a page.

storage __ offset
A pointer to the group storage area.

1-5 » Constants and Data Types

GPR DATA TYPES

GPR_$BMF_ GROUP_HEADER_ARRAY _T

A gpr_$max__bmf__group-element array of
gpr _bmf__group _header _t record structures.
The diagram below illustrates a single element:

predefined byte:
type offset field name
15 0
0: integer | n_sects
2: integer pixel_size
4: integer allocated_size
6: integer bytes_per_line
8: integer
bytes_per_sect
10: integer
12: integer
storage_offset
14: integer

Constants and Data Types

Field Description:

n__sects
The number of sections in a group.

pixel _size
The number of bits per pixel in each section of a
group.

allocated _size

bytes__per__line
The number of bytes in one row of a bitmap.

bytes__per__sect

The number of bytes__per__line multiplied by
the height of the bitmap. This value must be
rounded up to a page boundary, or for small
bitmaps rounded up to the next largest binary
submultiple of a page.

storage __ offset
A pointer to the group storage area.

~—

O

D

A

GPR_$COLOR_T

GPR_ $COLOR_ VECTOR_T

GPR_$CONTROLLER _TYPE_T

GPR_$COORDINATE_ ARRAY _T

GPR__$COORDINATE_T

GPR_$DECOMP_ TECHNIQUE_T

GPR DATA TYPES

A 4-byte integer. Defines a color.

A 256-element array of 4-byte integers. Stores
multiple color values. Arrays of this type are used
as input parameters of color values to be inserted
into consecutive slots of a color map. They are also
used as output parameters to store color values
when inquiries are performed on color maps.

A 2-byte integer. Unique number corresponding to
the display controller type. One of the following
predefined values:

GPR_$CTL__NONE
None or not applicable

GPR_$CTL_ MONO _1
DN100/400/420/460

GPR_$CTL_MONO_2
DN300/ 320/330

GPR_$CTL_ COLOR_1
DN600/660/550/560

GPR_ $CTL__COLOR_2
DN580

GPR_$CTL_COLOR_3
DN570/570A

GPR_$CTL_COLOR_4
DN3000

GPR_$CTL_MONO_4
‘DN3000

A 10-element array of 2-byte integers. Specifies
several coordinates in a bitmap. Generally, x
coordinates are passed in one array and y
coordinates are passed in another array.

A 2-byte integer. Specfies one coordinate in a
bitmap. ‘

A 2-byte integer. Specifies a decomposition
technique. One of the following predefined values:

GPR_$FAST _TRAPS
Decomposes polygons into trapezoids using
integer arithmetic.

GPR__$PRECISE_ TRAPS
Decomposes polygons into trapezoids using
double integer arithmetic.

1-7 Constants and Data Types

GPR DATA TYPES

GPR_$DIRECTION_T

Constants and Data Types

GPR_$NON_ OVERLAPPING _TRIS
Decomposes polygons into nonoverlapping
triangles.

GPR_$RENDER _EXACT
Renders polygons directly without
decomposing them into simpler polygons.

A 2-byte integer. Specifies the direction of
movement from one text character position to
another in a bitmap. One of the following
predefined values:

GPR_ $UP

GPR_$DOWN

GPR_$LEFT

GPR_$RIGHT

)

~
y
;

O

O

O

GPR_$DISP_CHAR_T

predefined
type

gpr_S$controller_type_t

gpr_%$accelerator_type_t

GPR DATA TYPES

Stores display characteristics. The diagram below
illustrates the.gpr _ $disp __char__t data type:

byte:
offset field name
15 0
0: integer controller_type
2: integer accelerator_type
4: l integer x_window_origin
6: integer y_window_origin
8: integer x_window_size
10: integer y_window_size
12: integer x_visible_size
14: integer y_visible_size
16: integer x_extension_size
18: integer y_extension_size
20: integer x_total_size
22: integer y_total_size
24: | - integer x_pixels_per_cm
26: integer y_pixels_per_cm

1-9 Constants and Data Types

GPR DATA TYPES

predefined © byte:
type offset field name

28: integer n_planes

30: integer n_buffers

32: integer 'delta_x_per_buffer

34: integer delta_y_per_buffer

36: integer delta_planes_per_buffer
gpr_S$overlap_set_t 38: integer mem_overlaps

40: integer X_zoom_max

42: | integer | y_zoom_min

44: integer video_refresh_rate

46: integer n_primaries

48: integer lut_width_per_primary
gpr_$format_set_t 50: integer avail_formats
gpr_%$access_set_t 52: integer avail_access

54: integer access_address_space
gpr_disp_invert_t 56: integer invert

Field Description:
CONTROLLER _TYPE A 2-i)yte integer. The type of graphics hardware
controller. One of the following predefined
values:

GPR_$CTL_NONE
none or not applicable.

Constants and Data Types 1-10

L

O

GPR DATA TYPES

GPR_$CTL_MONO_1
DN100/400/420/460

GPR_$CTL_MONO_2
DN300,/320/330

GPR_$CTL_COLOR_1
DN600/550/560

GPR_$CTL_ COLOR_ 2
580 -

GPR_$CTL_COLOR_3
DN570

GPR_$CTL_COLOR_4
DN3000 color.

For gpr_$no_display mode, gpr_$ctl_none is returned.

Note that code which makes use of these values may not automatically
extend to new node types, since as new controllers are released,
they will be given new values, and this list will be extended.

ACCELERATOR_ TYPE A 2-byte integer. The type of graphics hardware
processing accelerator for the node. Only one of
the following values is returned. One of the
following predefined values:

GPR__$ACCEL_ NONE
none or not applicable. -

NOTE:
Code which makes use of these values may not
automatically extend to new .node types, since as
new controllers are released, they will be given
new values, and this list will be extended.

For gpr_$no_display mode, gpr_$accel none is
returned.

X_WINDOW _ ORIGIN
X origin of the frame or window in frame and direct mode respectively. For borrow
mode and no-display mode the origin is (0,0).

Y _WINDOW _ ORIGIN
Y origin of the frame or window in frame and direct mode respectively. For borrow
mode and no-display mode the origin is (0,0).

X_WINDOW _SIZE

X dimension of the frame or window in frame and direct mode respectively. For
borrow mode this is the x dimension of the screen. For no-display mode this is the x
dimension of the maximum legal bitmap.

1-11 Constants and Data Types

GPR DATA TYPES

Y_WINDOW _SIZE

Y dimension of the frame or window in frame and direct mode respectively. For A (\]
borrow mode this is the x dimension of the screen. For no-display mode this is the y —
dimension of the maximum legal bitmap.

X _VISIBLE _SIZE
X dimension of the visible area of the screen for frame, direct, and borrow modes.
For no-display mode this is the x dimension of the maximum legal bitmap size.

Y __VISIBLE _SIZE
X dimension of the visible area of the screen for frame, direct, and borrow modes.
For no-display mode this is the x dimension of the maximum legal bitmap size.

X _EXTENSION _SIZE

The maximum x dimension of the bitmap after having been extended by
GPR_$SET_ BITMAP _ DIMENSIONS. For frame, direct and no-display modes,

this size is the same as X__VISIBLE _ SIZE. For borrow-mode, this size may be A
bigger if the device has more display memory past the edges of the visible area. ()

Y _EXTENSION _SIZE

The maximum y dimension of the bitmap after having been extended by

GPR_ $SET__BITMAP _ DIMENSIONS. For frame, direct and no-display modes,
this size is the same as Y__ VISIBLE _ SIZE. For borrow-mode, this size may be
bigger if the device has more display memory past the edges of the visible area.

X _TOTAL _SIZE N
X dimension of total bitmap memory. In particular, this is the number of 2
addressable pixel positions, in a linear pixel addressing space, between the first pixel ~
of a scan line and the first pixel of the next scan line. This value may be larger than

x_ extension __size. For no-display mode this value is the x dimension of the

maximum legal bitmap.

Y __TOTAL _SIZE
Y dimension of total bitmap memory. This value may be larger than
y __extension __size. For no-display mode this value is the y dimension of the

a
maximum legal bitmap. \ v
X_PIXELS _PER_CM
The number of physical pixels per centimeter on the screen in the x dimension. For
no-display mode, this value is set to zero.
Y_PIXELS_PER__CM
The number of physical pixels per centimeter on the screen in the y dimension. For
no-display mode, this value is set to zero.
N__PLANES
The maximum number of planes of bitmap memory available on the device. For
no-display mode, this parameter is the maximum legal bitmap depth.
N__BUFFERS
The number of displayable refresh buffers available on the device, in borrow mode. Py
In frame, direct, and no-display modes, this parameter is set to one. 5
N

Constants and Data Types 1-12

GPR DATA TYPES

DELTA_X_PER_BUFFER

The "distance® in x, in pixel addresses between refresh buffers on a device with
more than one buffer, in borrow mode. For frame, direct and no-display modes, and
for devices with only one buffer, this parameter is set to zero.

DELTA_Y _PER_ BUFFER

The "distance" in y, in pixel addresses between refresh buffers on a device with
more than one buffer, in borrow mode. For frame, direct and no-display modes, and
for devices with only one buffer, this parameter is set to zero.

DELTA_PLANES _PER_BUFFER

This parameter gives the "distance" in pixel depth between refresh buffers on a
device with more than one buffer, in borrow mode. Currently no such device
capability is supported, but it may be in the future. For frame, direct and no-
display modes, and for devices with only one buffer, this parameter is set to zero.

MEM_ OVERLAPS A 2-byte integer. This parameter gives the kinds
of overlap situations that can exist between
refresh buffer memory that may be used for
different purposes in the device. Sometimes a
device comes with extra refresh buffer memory
beyond what is used to hold the screen image.
There are several recognized purposes for
particular parts of such memory, and sometimes
some memory locations may be available for
more than one purpose. If so, the program using
this memory will have to take care not to use the
same memory for two different purposes at the
same time. In order to decide whether this is a
possibility, the program can inspect this
parameter. For frame, direct and no-display
modes, this parameter is set to the null set. Any
combination of the following predefined values:

GPR_$HDM_ WITH_BITM_ EXT
Hidden display memory (HDM), used for
loaded text fonts and HDM bitmaps,
overlaps with the area into which a bitmap
can be extended by use of the
GPR__$SET _ BITMAP _ DIMENSIONS

call.

GPR_$HDM_ WITH_BUFFERS
HDM overlaps with extra displayable
refresh buffers.

GPR_$BITM_EXT_ WITH_ BUFFERS
The bitmap extension area overlaps with
displayable refresh buffers.

X_Z00M_MAX .

The maximum pixel-replication zoom factor for x on a device in borrow mode. For
frame, direct and no-display modes, and for devices which do not support pixel-
replication zoom, these parameters are set to 1.

1-13 . Constants and Data Types

GPR DATA TYPES

Y__ZOOM_MAX

The maximum pixel-replication zoom factor for y on a device in borrow mode. For
frame, direct and no-display modes, and for devices which do not support pixel-
replication zoom, these parameters are set to 1.

VIDEO _ REFRESH__RATE
The refresh rate of the screen in Hertz. For no-display mode, this value is set to
zZero.

N_PRIMARIES

The number of independent primary colors supported by the video for the device.
For color devices, this value is three; for monochrome devices it is one. For no-
display mode, this value is set to zero.

LUT_WIDTH__PER__ PRIMARY

The value gives the number of bits of precision available in each column of a video
lookup table (color map) for representing the intensity of a primary color in an
overall color value. If a primary color can only be on or off, this value is one. If it
can have 16 intensities, this value will be four. If it can have 256 intensities, this
value will be eight. For no-display mode, this parameter is set to zero.

AVAIL_FORMATS A 2-byte integer. The set of available interactive
or imaging formats available on the device. Any
combination of the following predefined values:

GPR_$INTERACTIVE
Interactive format

GPR_$IMAGING _ 1024X1024X8
8-bit pixel format on a two-board
configuration

GPR _ $IMAGING _ 512X512X24
24-bit pixel format on a three-board
configuration

AVAIL,_ ACCESS A 2-byte integer. This parameter gives the
possible legal pixel cell sizes, in bits, which are
available to a program making direct read or
write access to the refresh buffer. Currently, the
only supported pixel cell size is one bit. This
means that the refresh buffers can only be
accessed by plane. In the future, other pixel cell
sizes may be supported. Any combination of the
following predefined values:

GPR_$ALLOC_1
One bit per pixel cell

GPR_$ALLOC _2
Two bits per pixel cell

GPR_$ALLOC _4
Four bits per pixel cell

Constants and Data Types 1-14

77N

)

GPR DATA TYPES

O GPR_$ALLOG_8
One byte per pixel cell
GPR_$ALLOC_ 16
Two bytes per pixel cell

GPR_$ALLOC_32
Four bytes per pixel cell

ACCESS _ ADDRESS _ SPACE

This parameter gives the amount of address space available for making direct access
to the refresh buffer of the device, in units of 1K-byte pages. For example, if the
address space is of a size sufficient to cover 1024 scan lines, each of 1024 bits, its
extent will be 128K bytes, thus the value of this parameter will be 128.

INVERT A 2-byte integer. This parameter is intended for
monochromatic devices. It indicates how the
Q : ' display manager’s INV is implemented on the
device. One of the following predefined values:

GPR__$ACCEL _NONE
The display is not a monochromatic display
or there is no display.

GPR_$INVERT _ SIMULATE
Color map is simulated in software.

~

GPR_$INVERT _HARDWARE
Color map is implemented in hardware.

GPR__$DISPLAY_ CONFIG_T A 2-byte integer. Specifies the hardware
configuration. One of the following predefined
values:

GPR_$BW_800X1024
Q A portrait black and white display.

GPR__$BW _1024X800
A landscape black and white display.

GPR__$COLOR _1024X1024X4
A four-plane color display.

GPR__$COLOR __1024X1024X8
An eight-plane color display.

GPR__$COLOR __1024X800X4
An four-plane color display.

GPR__$COLOR __1024X800X8
An eight-plane color display.

GPR_ $COLOR _ 1280X1024X8
Q Two-board, eight-plane display.

1-15 Constants and Data Types

GPR DATA TYPES

GPR__$DISPLAY _INVERT_T

GPR_ $DISPLAY_MODE_T

GPR_$EC_KEY_T

GPR_$EVENT_T

Constants and Data Types

GPR_ $COLOR1_ 1024X800X8
Two-board, eight-plane display.

GPR_$COLOR2_ 1024X800X4
One-board, four-plane display.

GPR_ $BW_ 1280X1024
Black and white display.

A 2-byte integer. The different color map
implementations on monochromatic displays. One
of the following predefined values:

GPR_$NO _INVERT
Not applicable, that is, a color monitor or no
display.

GPR__$INVERT _ SIMULATE
The color map is simulated in software.

GPR_$INVERT _ HARDWARE
The color map is in hardware.

A 2-byte integer. Specifies the mode of operation.
One of the following predefined values:

GPR_$BORROW
Uses the entire screen.

GPR_ $FRAME
Uses a frame of the Display Manager.

GPR_$NO_ DISPLAY
Uses a main-memory bitmap.

GPR_ $DIRECT
Uses a display-manager window.

GPR__$BORROW_NC
Uses the entire screen but does not clear the
bitmap.

A 2-byte integer. GPR_$INPUT _EC is a
predefined value.

A 2-byte integer. Specifies the type of input event.
One of the following predefined values:

GPR_ $KEYSTROKE
When keyboard character is typed.

GPR__$BUTTONS

When you press button on the mouse or
bitpad puck.

1-16

(ﬁ

GPR_$FORMAT_SET _T

GPR_$HORIZ_SEG_T

GPR DATA TYPES

GPR_$LOCATOR
When you move the mouse or bitpad puck or
use the touchpad.

GPR_$LOCATOR_UPDATE

Only the most recent location when you move
the mouse or bitpad puck or use the
touchpad.

GPR_ $ENTERED _ WINDOW
When the cursor enters a window in which the
GPR bitmap resides. Direct mode is required.

GPR_S$LEFT_ WINDOW
When the cursor leaves a window in which the
GPR bitmap resides. Direct mode is required.

GPR_$LOCATOR _STOP
When you stop moving the mouse or bitpad
puck, or stop using, the touchpad.

GPR _$NO_ EVENT

A 2-byte integer. Specifies a set of imaging
formats.

Defines the left- and right-hand x coordinates and

the y coordinate of a horizontal line segment. The
diagram below illustrates the gpr__ $horiz_seg__t
data type:

predefined byte: .

type offset 15 0 field name
0: integer x_coord_|
0. integer x_coord_r
4: integer y_cobrd

Field Description:

x__coord 1
The left-hand x__coordinate of the line.

x__coord _r
The right-hand x__ coordinate of the line.

y__coord
The y coordinate of the line.

1-17 Constants and Data Types

GPR DATA TYPES

GPR__$IMAGING _FORMAT _T A 2-byte integer. Specifies an imaging or
interactive display format. One of the following
predefined values:

GPR _$INTERACTIVE
Specifies interactive format.

GPR__$IMAGING _ 1024X1024X8
Specifies 8-bit imaging format.

GPR_$IMAGING _ 512X512X24
Specifies 24-bit imaging format.

GPR_$KEYSET_T An 8-element array of 4-byte integers. Specifies the
" set of characters that make up a keyset associated
with the graphics input event types
GPR_$KEYSTROKE and GPR _ $BUTTONS.
The maximum number of elements in a keyset is
256. Each element of the set is represented by one
bit.

GPR_$LINE_PATTERN_T A 4-element array of 2-byte integers. Specifies the
line-pattern to use for line-drawing operations

GPR_ $LINESTYLE_T A 2-byte integer. Specifies the linestyle for line-
drawing operations One of the following predefined
values:

GPR_$SOLID
Draw solid lines.

GPR__$DOTTED
Draw dotted lines.

GPR_$MASK_T A 2-byte integer. Specifies a set of planes to be
used in a plane mask.

GPR_$MEMORY _ OVERLAP _T A 2-byte integer. Kinds of memory overlaps
between different classes of buffer memory. One of
the following predefined values:

GPR__$HDM_ WITH_ BITM__EXT

Hidden display memory (HDM), used for
loaded text fonts and HDM bitmaps, overlaps
with the area into which a bitmap can be
extended by use of the

GPR _$SET _ BITMAP DIMENSIONS call

GPR_$HDM_ WITH_ BUFFERS
HDM overlaps with extra displayable refresh
buffers

GPR__$BITM_EXT_ WITH_BUFFERS

The bitmap extension area overlaps with
displayable refresh buffers.

Constants and Data Types 1-18

S

O

GPR_ $OBSCURED _ OPT _T

GPR_$OFFSET _T

predefined
type

GPR_ $OVERLAP_SET_T

GPR_$PIXEL_ARRAY_T

GPR_$PIXEL_VALUE_T

byte:
offset

15

GPR DATA TYPES

A 2-byte integer. Specifies the action when a
window is obscured. One of the following
predefined values:

GPR_$OK_IF_OBS
Acquire the display even though the window is
obscured.

GPR_$INPUT _OK_IF_OBS
Acquire the display and allows input into the
window even though the window is obscured.

GPR_$ERROR_IF _OBS
Do not acquire the display; return an error
message.

GPR_$POP_IF_OBS
Pop the window if it is obscured.

GPR_$BLOCK_IF_OBS
Do not acquire the display until the window is

popped.

Specifies the width and height of a window. The
diagram below illustrates the gpr__ $offset__t data
type:

field name

integer x_size

integer y_size

Field Description:

X __size
The width of the window in pixels.

y __size
The height of the window in pixels.

A 2-byte integer. Specifies a set of overlaps
between different classes of buffer memory.

A 131073-element array of 4-byte integers. Stores
multiple pixel values.

A 4-byte integer. Defines an index into a color map
to identify the color of an individual pixel.

1-19 Constants and Data Types

GPR DATA TYPES

GPR_ $PLANE_ T A 2-byte integer. Specifies the number of planes in
a bitmap.
GPR_ $POSITION_ T Specifies the x and y coordinates of a point in a

bitmap. The diagram below illustrates the
gpr__$position _t data type:

predefined byte:
type offset field name
15 0
0: integer x_coord
2: integer y_coord
Field Description:
x__coord
The x_ coordinate of the point in the bitmap.
y__coord
The y _ coordinate of the point in the bitmap.

GPR_$RASTER _OP_ARRAY T A 8-element array of 2-byte integers. Stores
multiple raster operation opcodes

GPR__$RASTER_OP_T A 2-byte integer. Specifies raster operation
opcodes.

GPR__$ROP_PRIM_ SET_ELEMS_ T A 2-byte integer. Specifies the primitives to which
raster operations are applied. Any combination of
the following predefined values:

GPR_$ROP_BLT

Apply raster operations to block transfers.

GPR_$ROP_LINE

Apply raster operations to unfilled line .

primitives. .

GPR_$ROP_FILL

Apply raster operations to filled primitives.
GPR_$ROP_PRIM_SET_T A 2-byte integer. Specifies the set of primitives

that can have a raster operation established with
GPR_S$RASTER__OP_PRIM_SET. In addition,
this set specifies the primitives for which a raster
operation can be returned with ;
GPR_$INQ_RASTER _OPS. The maximum
number of elements in the set is 3. Each element of
the set is represented by one bit.

Constants and Data Types 1-20

a

O

O

GPR_$RHDM_PR_T
GPR_$RWIN_PR_T
GPR_$STRING _T

GPR_$TRAP_LIST_T

predefined
type

Top

Bottom

byte:
offset

10:

GPR DATA TYPES

A 4-byte integer. A pointer to a procedure used for

refr

esh-hidden display memory procedures.

A 4-byte integer. A pointer to a procedure used for

refr

An

esh-window procedures.

array of up to 256 characters. Stores up to 256

characters.

A 10-element array of gpr__ $trap __t record
structures. The diagram below illustrates a single

element:
field name
15 0

integer x_coord_|
integer x_coord_r
integer y_coord
integer x_coord_|

- integer x_coord_r
integer y_coord

Field Description:

1-

top.x__coord _1
The left-hand x _coordinate of the top line.

top.x__coord _r
The right-hand x__coordinate of the top line.

top.y __ coord

The y__coordinate of the top line.
bot.x__coord _1

The left-hand x__coordinate of the bottom line.

bot.x__coord _r
The right-hand x__coordinate of the bottom

line.

bot.y _ coord
The y __coordinate of the bottom line.

21 Constants and Data Types

GPR DATA TYPES

GPR_$TRAP_T

predefined
type

Top

Bottom

Constants and Data Types

byte:
offset

Specifies the coordinates of the top and bottom line
segments of a trapezoid. The diagram below
illustrates the gpr__$trap __t data type:

field name
15 0
integer x_coord_|
integer x_coord_r
integer y_coord
integer X_coord_]
integer x_coord_r
integer y_coord

Field Description:

top.x__coord __1
The left-hand x__coordinate of the top line.

top.x__coord _r
The right-hand x__coordinate of the top line.

top.y _ coord
The y _ coordinate of the top line.

bot.x__coord 1
The left-hand x__coordinate of the bottom line.

bot.x _coord _r
The right-hand x__coordinate of the bottom

line.

bot.y _ coord
The y__coordinate of the bottom line.

1-22

.

N

N

S

GPR DATA TYPES

GPR__$TRIANGLE _LIST_T A 10-element array of gpr__$triangle__t record

structures. The diagram below illustrates a single

o~

C

element:
predefined byte:
type offset field name
15
0: integer x_coord (p1)
gpr_Sposition_t 2: integer x_coord (p1)
4: integer y_coord (p2)
gpr_$position_t
{ 6: integer x_coord (p2)
8: integer x_coord_r (p3)
gpr_$position_t
10: | . integer y_coord (p3)
12: integer winding
GPR__$TRIANGLE _FILL_ CRITERIA_T Specifies the filling criterion to use on polygons
decomposed into triangles or polygons rendered
with GPR_$RENDER _ EXACT. The diagram
below illustrates the ‘
gpr_ $triangle_ fill _ criteria__t data type:
redefined byte: .
?ype offset field name
15
gpr_$winding_set_t 0: integer wind_type
2: integer winding_no

Field Description:

wind _ type

The type of fill criterion to use. That is,
GPR _ $PARITY, GPR _ $NONZERO, or
GPR __$SPECIFIC.

1-23

Constants and Data Types

GPR DATA TYPES

winding__no

The winding number to be used when the N
wind _ type is GPR_$SPECIFIC. RN
GPR_$TRIANGLE_ T k Specifies the coordinates of a triangle. The diagram

below illustrates the gpr_ $triangle _t data type:

predefined byte:
type offset - field name
15 0
0: integer x_coord (p1)

gpr_S$position_t 2: | integer | y coord (p1)

4; | integer x_coord (p2)

gpr_$position_t
6: integer y_coord (p2) (\
8: | integer x_coord_r (p3)

gpr_$position_t

10: integer y_coord (p3)

12: integer winding
(o
N
Field Description:

pl.x__coord

The x coordinate of point 1. N
{

pl.y_coord N

The y coordinate of point 1.

p2.x__coord
The x coordinate of point 2.

p2.y _ coord
The y coordinate of point 2.

p3.x__coord _
The x coordinate of point 3.

p3.y __coord
The y coordinate of point 3.

winding
The winding number. -

Constants and Data Types 1-24

O

o

O

——

O

GPR__$VERSION_T

predefined
type

GPR__$WINDING_SET _T

GPR_$WINDOW _LIST _T

byte:
offset

GPR DATA TYPES

The version number of an external bitmap header.
The diagram below illustrates the gpr__ $version__t
data type:

field name
15 0
integer major
integer minor

Field Description:

major
The major version number.

minor
The minor version number.

A 2-byte integer. Specifies a fill criterion. One of
the following predefined values:

GPR_$PARITY
Apply a parity fill.

GPR_ $NONZERO
Apply a nonzero fill.

GPR_$SPECIFIC
Fill areas with a specific winding number.

A 10-element array of gpr__$window __t record

structures. The diagram below illustrates a single
element:

1-25 Constants and Data Types

GPR DATA TYPES

predefined
type

window_base

window_size

Constants and Data Types

byte:
offset

15

integer

integer

integer

integer

field name

x_coord.
y_coord
X_size

y_size

Field Description:

window __base.x__coord
The x coordinate of the top left-hand corner of
the window.

window __base.y _ coord
The y coordinate of the top left-hand corner of
the window.

window __size.x _size
The width of the widow in pixels.

window __size.y _size
The height of the window in pixels.

1-26

o

r A

GPR_ $WINDOW _T

predefined
type

window_base

‘window_size

byte:
offset

GPR DATA TYPES

Defines a rectanglar section of a bitmap. X_ coord
and y__coord specify the coordinates of the top left-
hand corner of a rectangle. X_ size and y _ size
specify the width and height of the rectangle. The
diagram below illustrates the gpr__ $window _t
data type:

field name
15 0
integer x_coord
integer y_coord
integer x_size
integer y_size

Field Description:

window _base.x __coord
The x coordinate of the top left-hand corner of
the window.

window _base.y __coord
The y coordinate of the top left-hand corner of

the window.

window _size.x _ size
The width of the widow in pixels.

window _ size.y _ size
The height of the window in pixels.

1-27 Constants and Data Types

GPR DATA TYPES

STATUS _$T

A status code. The diagram below illustrates the
STATUS _$T data type:

byte: field name
offset
31 0
0: integer all
or
31
0: fail
24
subsys
16
1: modc
. 0
2: integer code

Constants and Data Types

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

1-28

O

Chapter 2
GPR Routines

This chapter lists user-callable routine descriptions alphabetically for quick reference. FEach
routine description contains:

e An abstract of the routine’s function

e The order of the routine parameters

e A brief description of each parameter

e A description of the routine’s function and use
If the parameter can be declared using a predefined data type, the description contains the phrase
nin XXX format", where XXX is the predefined data type. Pascal and C programmers, look for
this phrase to determine how to declare a parameter.
FORTRAN programmers, look for the phrase that describes the data type in atomic terms, such
as "This parameter is a 2-byte integer.® For a complete description of each data type see

Chapter 1.

The rest of the parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

event__type
The type of event that occurred, in GPR__$EVENT _ T format. This is a 2-byte integer.
One of the following predefined values is returned:

GPR_$KEYSTROKE Input from a keyboard
GPR_$BUTTONS Input from mouse or bitpad puck buttons
GPR_$LOCATOR Input from a touchpad or mouse

GPR_$LOCATOR_UPDATE Most recent input from a touchpad or mouse
GPR_$ENTERED_WINDOW Cursor has entered window

GPR_$LEFT_WINDOW Cursor has left window
GPR_$LOCATOR_STOP Input from a locator has stopped
GPR_$NO_EVENT No event has occurred

The GPR (Graphics Primitives) programming calls perform graphics operations within windows
and window panes. This section describes their data types, call syntax, and error codes. Refer to
the Introduction at the beginning of this manual for a description of data type diagrams and call
syntax format.

2-1 GPR Routines

GPR__$ACQUIRE _ DISPLAY

GPR_$ACQUIRE _DISPLAY :

Establishes exclusive access to the display hardware and the display driver.

FORMAT
unobscured := GPR_$ACQUIRE DISPLAY (status)

RETURN VALUE

unobscured
A Boolean value that indicates whether or not the window is obscured (false = obscured).
This parameter is always true unless the option GPR__ $OK _IF OBS was specified to
GPR_$SET_ OBSCURED _ OPT.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

While the display is acquired, the Display Manager cannot run. Hence, it cannot respond to
pad calls or to stream calls to input or transcript pads. If you need to call any of these
routines, you must release the display to do so.

Since no other display output can occur while the display is acquired, it is not a good idea
to acquire the display for long periods of time. The acquire routine automatically times out
after a default period of one minute; programs can change this time-out with the routine

GPR_$SET__ACQ__ TIME _ OUT.
Although this call is needed only in direct mode, it can be called from any of the other
display modes, where it performs no operation and returns the status code

GPR_$NOT_IN_DIRECT_ _MODE.

If the display is already acquired when this call is made, a count of calls is incremented such
that pairs of acquire/release display calls can be nested.

GPR Routines 2-2

—.

N

4

A

)

-

GPR_ $ADDITIVE_BLT

GPR__$ADDITIVE _BLT

Transfers a single plane of any bitmap to all active planes of the current bitmap.

FORMAT

GPR_$ADDITIVE BLT (source_bitmap_desc, source_window, source_plane,
dest_origin, status)

INPUT PARAMETERS

source_ bitmap __desc

Descriptor of the source bitmap which contains the source window to be transferred, in
GPR _$BITMAP _ DESC__T format. This is a 4-byte integer.

source__window
Rectangular section of the bitmap from which to transfer pixels, in GPR_ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Types section for more
information. ‘

source__plane
The identifier of the source plane to add, in GPR_$PLANE _ T format. This is a 2-byte
integer. Valid values are in the range 0 through the identifier of the source bitmap’s
highest plane.

dest _origin
Start position (top left coordinate position) of the destination rectangle, in
GPR __$POSITION _ T format. This data type is 4 bytes long. See the GPR Data Types
section for more information. Coordinate values must be within the limits of the current
bitmap, unless clipping is enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Both the source and destination bitmaps can be in either display memory or main memory.

The source window origin is added to the coordinate origin for the source bitmap, and the
result is the actual origin of the source rectangle for the BLT. Similarly, the destination
origin is added to the coordinate origin for the current bitmap, and the result is the actual
origin of the destination rectangle for the BLT.

If the source bitmap is a Display Manager frame, the only allowed raster op codes are 0, 5,
A, and F. These are the raster operations in which the source plays no role.

If a rectangle is transferred by a BLT to a display manager frame and the frame is

refreshed for any reason, the BLT is re-executed. Therefore, if the information in the source
bitmap has changed, the appearance of the frame changes accordingly.

2-3 GPR Routines

GPR_$ALLOCATE_ ATTRIBUTE_BLOCK

GPR_$ALLOCATE _ATTRIBUTE _BLOCK

Allocates a data structure that contains a set of default bitmap attribute settings, and C
returns the descriptor for the data structure.

FORMAT
GPR_$ALLOCATE_ATTRIBUTE BLOCK (attrib_block_desc, status)
OUTPUT PARAMETERS

attrib__block __desc
Attribute block descriptor, in GPR_$ATTRIBUTE _DESC_ T format. This is a 4-byte

integer.
status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR _
Data Types section for more information. (s
USAGE

To associate an attribute block with the current bitmap, use

GPR_$SET_ATTRIBUTE _BLOCK.

To deallocate an attribute block, use GPR__ $DEALLOCATE _ ATTRIBUTE_ BLOCK.

GPR Routines 2-4

O

GPR_$ALLOCATE _ BITMAP

GPR_$ALLOCATE _ BITMAP

Allocates a bitmap in main memory and returns a bitmap descriptor.

FORMAT
GPR_$ALLOCATE BITMAP (size, hi_plane_id, attrib_block_desc, bitmap_desc, status)

INPUT PARAMETERS

size
Bitmap width and height, in GPR_$OFFSET _ T format. Possible values for width and
height are 1 - 8192. This data type is four bytes long. See the GPR Data Types section for
more information.

hi_ plane_id
Identifier of the highest plane which the bitmap will use, in GPR_$PLANE _ T format.
This is a 2-byte integer. Valid values are 0 - 7.

attrib__block __desc

Descriptor of the attribute block which the bitmap will use, in
GPR_$ATTRIBUTE _DESC__ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap __desc
Descriptor of the allocated bitmap, in GPR__$BITMAP _DESC _ T format. This is a 4-
byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE
To deallocate a bitmap, use GPR_ $DEALLOCATE _ BITMAP.

A program can not use a bitmap. after it is deallocated.

To establish an allocated bitmap as the current bitmap, use GPR_$SET _ BITMAP.

2-5 GPR Routines

GPR_$ALLOCATE_BITMAP__NC

GPR_$ALLOCATE _BITMAP _NC

Allocates a bitmap in main memory without setting all the pixels in the bitmap to zero, and
returns a bitmap descriptor.

FORMAT

GPR_$ALLOCATE_BITMAP_NC (size, hi_plane_id,attrib_block_desc,bitmap_desc,status)

INPUT PARAMETERS

size
Bitmap width and height, in GPR_$OFFSET _ T format. This data type is 4 bytes long.

The maximum size for a main-memory bitmap is 8192 x 8192. See the GPR Data Types
section for more information.

hi_plane__id
Identifier of the highest plane which the bitmap will use, in GPR_$PLANE _ T format.
This is a 2-byte integer. Valid values are 0 - 7.

attrib__block _desec
Descriptor of the attribute block which the bitmap will use, in
GPR__$ATTRIBUTE _DESC _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap _desc
Descriptor of the allocated bitmap, in GPR_ $BITMAP _DESC _ T format. This is a 4-
byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE
To deallocate a bitmap, use GPR_ $DEALLOCATE _ BITMAP.
A program can not use a bitmap after it is deallocated.
To establish an allocated bitmap as the current bitmap, use GPR_$SET _ BITMAP
GPR _ $ALLOCATE _ BITMAP sets all pixels.in the bitmap to zero; this routine does not.

As a result, GPR_ $ALLOCATE _ BITMAP _ NC executes faster, but the initial contents of
the bitmap are unpredictable.

GPR Routines 2-6

®

)

GPR_ $ALLOCATE_HDM_ BITMAP

GPR__$ALLOCATE _HDM_ BITMAP

Allocates a bitmap in hidden display memory.

FORMAT .

GPR_$ALLOCATE_HDM BITMAP (size, hi_plane_id, attrib_block_desc, bitmap_desc,
status)

INPUT PARAMETERS

size
The width and height of the bitmap, in GPR__$OFFSET _ T format. This data type is 4
bytes long. See the GPR Data Types section for more information.

hi__plane_id
The identifier of the highest plane of the bitmap, in GPR__$PLANE _ T format. Thisis a
2—byte integer.

attrib__block _desc
The descriptor of the bitmap’s attribute block, in GPR_ $ATTRIBUTE _DESC_ T
format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap __desc
The descriptor of the bitmap in hidden display memory, in GPR_ $BITMAP _DESC_T
format. This is a 4-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _$ALLOCATE _HDM_ BITMAP allocates a GPR bitmap in hidden display memory
for programs in borrow-display or direct mode. In frame mode, hidden display memory
bitmaps cannot be used.

In direct mode you must acquire the display before calling
GPR_$ALLOCATE _HDM_ BITMAP.

The maximum size allowed for hidden display memory bitmaps is 224 bits by 224 bits.

Use GPR_$DEALLOCATE _ BITMAP to deallocate a hidden display bitmap.

- 2=7 GPR Routines

GPR_$ARC_ 3P

GPR_$ARC_ 3P

Draws an arc from the current position.through two other specified points.

FORMAT
GPR_$ARC_3P (point_2, point_3, status)

INPUT PARAMETERS

point_ 2
The second point on the arc, in GPR__$POSITION _ $T format. This data type is 4 bytes
long. See the GPR Data Type section for more information.

point__3
The third point on the arc, in GPR__ $POSITION_ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status

Completion status, in STATUS_$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The coordinates you specify are added to the corresponding elements of the coordinate
origin for the current bitmap. The resultant coordinate positions are the points through
which the arc is drawn.

After the arc is drawn, point__3 beco